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Abstract. Changes of cell morphology and the state of 
differentiation are known to play important roles in 
embryogenesis as well as in carcinogenesis. Examples 
of particularly profound changes are the conversions of 
epithelial to mesenchymal cells; i.e., the dissociation 
of some or all polygonal, polar epithelial cells and 
their transformation into elongate, fibroblastoid cells of 
high motility. As an in vitro model system for such 
changes in cell morphology, we have used cell cultures 
of the rat bladder carcinoma-derived cell line NBT-II 
which, on exposure to inducing medium containing a 
commercial serum substitute (Ultroser G), show an 
extensive change in their organization (epithelial- 
mesenchymal transition): the junctions between the ep- 
ithelial cells are split, the epithelial cell organization is 
lost, and the resulting individual cells become motile 
and assume a spindle-like fibroblastoid appearance. 
Using immunofluorescence microscopy and biochemi- 
cal protein characterization techniques, we show that 
this change is accompanied by a redistribution of des- 
mosomal plaque proteins (desmoplakins, desmoglein, 

plakoglobin) and by a reorganization of the cytokeratin 
and the actin-fodrin filament systems. Moreover, 
intermediate-sized filaments of the vimentin type are 
formed in the fibroblastoid cells. We demonstrate that 
the modulation of desmosomal proteins, specifically an 
increase in soluble desmoplakins, is a relatively early 
event in cell dissociation and in epithelial-mesen- 
chymal transition. In this process, a latent period of 
5 h upon addition of inducing medium precedes the 
removal of these desmosomal components from the 
plasma membrane. The transition, which is reversible, 
is dependent on continued protein synthesis and phos- 
phorylation but not on the presence of the inducing 
medium beyond the initial 2-h period. We discuss the 
value of this experimental system as a physiologically 
relevant approach for studying the regulation of the as- 
sembly and disassembly of desmosomes and other in- 
tercellular adhesion structures, and as a model of the 
conversion of cells from one state of differentiation 
into another. 

QUISITION of cell motility is a prerequisite to biologi- 
cal processes taking place in tissue remodeling. It 
has been described as a major event in morphogene- 

sis (22, 67, 68, 71), wound repair (75), and pathological situ- 
ations such as invasion and metastasis of tumor cells (dis- 
cussed in reference 62). Even though the cellular mechanisms 
responsible for the acquisition of cell motility remain un- 
clear, it can be postulated that they are multiple, depending 
in part on the state of differentiation of the cells that will 
eventually migrate. Epithelial cells have two main possibili- 
ties to move: they can remain linked together and move as 
epithelial sheets, as observed in gastrulation and epiboly (71) 
and wound healing (65); alternatively, they can dissociate 
and migrate as individual cells. For example, during early 
embryogenesis certain groups of cells can detach from the 
epithelium and transiently or permanently express locomo- 
tory properties (8, 12, 15, 21, 64). In such cases, the acquisi- 

tion of motility is correlated with dramatic changes in the 
program of cell differentiation. The migrating cells no longer 
express epithelial characteristics, and acquire a mesenchy- 
mal phenotype. This change in cell differentiation is evi- 
denced not only by the loss of the apico-basolateral polarity 
typical for epithelial cells, but also by an abrupt change in 
cytoskeletal organization: mesenchymal cells no longer pro- 
duce cytokeratin filaments and express vimentin intermedi- 
ate filaments (22). In addition, the cell-cell adhesion of epi- 
thelial ceils mediated by specific cell adhesion molecules 
(CAMs) l and certain junctions such as desmosomes and 
zonula adhaerens are decreased in transition to mesenchymal 

1. Abbreviations used in this paper: CAMs, cell adhesion molecules; D-, 
desmosome negative; DG, desmoglein; 6-DMAP, 6-dimethylaminopurine; 
DP, desmoplakin; EMT, epithelial-mesenchymal transition; IF, intermedi- 
ate filament; PG, plakoglobin. 

© The Rockefeller University Press, 0021-9525/89/10/1495/15 $2.00 
The Journal of Cell Biology, Volume 109, October 1989 1495-1509 1495 



cells and are strengthened in the reverse process (8, 12, 21, 
22). These observations have led to the concept of "epithe- 
lial-mesenchymal transition" (EMT), defined as the possibly 
reversible process of conversion between epithelial and mes- 
enchymal cell differentiation programs. 

The structural and molecular mechanisms involved in such 
drastic changes are only poorly understood. Because of the 
general importance of EMT, several groups have tried to es- 
tablish in vitro model systems, using well-defined cell cul- 
tures, that could be of value for studies of the individual steps 
of such complex processes. Although not directly relevant to 
EMT, many observations of enhanced migratory activity and 
of morphological changes of a given cell type from an epithe- 
lial to a fibroblastoid appearance have been related to effects 
of certain agents such as addition of antibodies against CAMs 
(3); transfection of cells with oncogenes (26, 55); addition 
of EGE transforming growth factor-or, or "epithelial scatter 
factor" to cell cultures (2, 7, 61); lowering of the extracellular 
Ca ++ concentration (32); or plating the cells on specific 
substrata (66). As a particularly convenient cell system we 
have used the rat bladder carcinoma cell line NBT-II which 
was first found to undergo EMT-like changes when cultured 
on collagen type I fibers (66). We have been able to demon- 
strate a similar effect by addition of Ultroser G, a serum sub- 
stitute. As a first approach we have followed the fate of a 
special type of junction, the desmosome, and of junction- 
associated cytoskeletal elements, during an experimentally 
induced EMT-like change. 

Desmosomes are abundant in all layers of the transitional 
epithelium of the bladder (i.e., the urothelium [25, 34]), and 
probably play an important role in maintaining tissue cohe- 
sion during mechanical stretching of this organ. In addition, 
the development, growth, and metastasis of bladder carci- 
nomas has been studied extensively with respect to changes 
of desmosomal frequency or distribution, and of expression 
of cytoskeletal proteins (43, 74). The structure and composi- 
tion of desmosomes has been investigated in numerous 
studies (for review see references 9, 20, 57), and biochemical 
analyses have allowed the identification of at least six major 
polypeptides in desmosomes of stratified epithelia including 
urothelium. These are the four nonglycosylated proteins: 
desmoplakin I (DP I, Mr 250,000), desmoplakin II (DP II, 
Mr 215,000), plakoglobin (PG, Mr 83,000), and a basic 
polypeptide of Mr 75,000 (band 6 protein). In addition three 
glycoproteins have been identified: desmoglein (DG, Mr 
165,000), and desmocollins I (Mr 130,000) and II (Mr 
115,000). Obviously these three glycoproteins are good can- 
didates for an involvement in the formation and maintenance 
of stable intercellular adhesion. 

Until now the only method used to study the assembly and 
disassembly of the individual desmosomal proteins as well 
as the changes in desmosomes occurring in situations of re- 
duced intercellular adhesion was to lower the external Ca ++ 
concentrations in cell culture media, resulting in the rapid 
internalization of desmosomes, whereas desmosomes were 
reformed when the Ca ++ concentration was brought back to 
normal levels (13, 35, 41, 42, 50, 51, 73). As we show in this 
study, the EMT-like change of NBT-II cells offers a quasi- 
physiological model of desmosome splitting, modulation, 
and loss which is accompanied by enhanced cell motility and 
by extensive modifications of cytoskeletal organization. 

Materials and Methods 

Reagents 
Cycloheximide, 6-dimethylaminopurine (6-DMAP), cytochalasin B, and 
FITC-conjngated phaUoidin were purchased from Sigma Chemical Co. (St. 
Louis, MO). Mouse monoclonal antibodies against DPs I and II, IX], and 
PG have been described before (9, 10, 57). Guinea pig antiserum gpl0 is 
directed against cytokeratins 8 and 18. Human autoimmune antivimentin 
IgM was kindly provided by Prof. J. C. Brouet (H6pital Saint-Louis, Paris, 
France). Rabbit antiserum against fodrin was a generous giR of Dr. J. Nel- 
son (Institute for Cancer Research, Philadelphia, PA). Goat antiserum 
against rabbit aminopeptidase N, kindly provided by Dr. S. Maroux (Centre 
de Biochimie et de Bioiogie Mol6culaire, Marseille, France) has been de- 
scribed elsewhere (17). Mouse monoclonal anticytokeratin lu5 was pur- 
chased from Boehringer Mannheim GmbH (Mannheim, FRG). Rabbit IgG 
against human IgM was obtained from Nordic Immunology (Tilburg, The 
Netherlands). FITC-conjugated goat anti-rabbit IgG (Pasteur Institute, 
Paris, France), FITC-conjugated rabbit anti-goat IgG (Miles Scientific, 
Paris, France), and Texas Red-coupled goat anti-mouse IgG (Immunotech, 
Marseiile, France) were used as secondary antibodies. 125I-labeled 
anti-mouse Ig, t25I-labeled protein A, mouse antivimentin- and antiactin- 
diluted ascites were obtained from Amersham International (Buckingham- 
shire, UK). 

Cell Culture 
The NBT-II cell line originally established by Toyoshima et al. (70) was ob- 
tained from Prof. M. Mareel (Laboratory of Experimental Cancerology, 
University Hospital, Ghent, Belgium). The cells were grown (37°C in 5% 
CO2) in standard medium (DME supplemented with glutamine, antibiot- 
ics, and 10% heat-inactivated fetal calf serum). The cells were routinely 
subeultured twice a week by gentle trypsinization with a solution containing 
0.05 % (wt/vol) trypsin 0.02 % (wt/vol) EDTA, and replated at 1:20 dilution. 
When appropriate (see Results), Ultroser G serums substitute (lnstitut Bi- 
ologique Francais [IBF], Villenueve-la-Garenne, France) was added to the 
standard medium at a final concentration of 2%, thus defining the inducing 
medium. In these conditions, the growth rate curves of NBT-II cells in either 
standard or inducing medium were similar. In each experiment, induction 
of EMT was initiated after a 24-h preculture in standard medium that al- 
lowed a total recovery from trypsinization. 

Cell Colonization Experiments (In Vitro 
Wound Model) 
Subconfluent NBT-II cell monolayers were obtained after 48 h of culture in 
standard medium. They were gently scratched with a Gilson pipette yellow 
tip, and extensively rinsed with standard medium to remove all cellular de- 
bris. That procedure left a cell-free area of substratum ("wound"). Then the 
cultures were allowed to grow overnight in either standard or EMT-inducing 
medium. The next morning, the cultures were rinsed with PBS, stained with 
Coomassie blue, and photographed on Panatomic-X film (Eastman Kodak 
Co., Rochester, NY) with an Olympus camera mounted on an inverted mi- 
croscope (Leitz, Wetzlar, FRG). 

Immunofluorescence Microscopy of NBT-II Cells 
Subconfluent monolayers of NBT-II cells were cultured on glass coverslips 
in either standard or inducing medium. The cells were fixed at -20°C with 
methanol for 5 min followed by acetone for 1 min before processing for DE 
DG, PG, vimentin, cytokeratin, actin, and vinculin immunostaining. 
Aminopeptidase N immunolabeling was performed after fixation for 30 rain 
in 2.5% glntaraidehyde. Before fodrin immunostaining, cells were fixed for 
30 rain in 1.75% formaldehyde in PBS and extracted for 5 rain in 0.5% 
(wt/vol) Triton X-100. Primary antibodies were applied for I h, followed by 
three 5-min washes in PBS, a 30-min incubation with FITC-coupled goat 
anti-rabbit lgG, FITC-coupled rabbit anti-goat IgG, or Texas Red-coupled 
goat anti-mouse IgG, and three final washes of 5 rain each in PBS. For 
vimentin immunostaining, primary antibody incubation was followed by ap- 
plication of first rabbit anti-human IgM and then FITC-coupled goat 
anti-rabbit IgG. Double immunofluorescence labeling was performed by 
applying a mixture of anti-DP and antivimentin, followed by extensive 
washing, incubation with rabbit anti-human IgM, washes in PBS, and 
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finally application of a mixture of FITC-coupled goat anti-rabbit IgG and 
Texas red-coupled goat anti-mouse IgG. For actin staining, FITC-coupled 
phalliodin was applied for 30 min, followed by several washes as described 
above for antibody work. Finally, coverslips were dipped briefly in water, 
then in ethanol, and mounted in Moviol (Hoechst GmbH, Frankfurt, FRG). 
The cells were viewed en face with a 63x objective using a Leitz micro- 
scope equipped with epifluorescence illumination and photographed on Tri- 
X pan film. 

When appropriate (see Results), the percentages of D- (desmosome 
negative) cells were counted. In these experiments, identical number of cells 
were seeded on each coverslip and the extent of confluence at the end of 
culture was similar as estimated by the number of cells per millimeter 
squared. Cells were considered D- when DP or DG immunoreactive "dots ~ 
were totally absent from the cell periphery. For each measurement, at least 
500 cells were counted. 

Solubility Properties of DP, DG, and PG Proteins 
Subconfluent cultures of Nffr-II cells grown in standard or inducing medium 
in 90-ram Petri dishes were extracted sequentially. At the end of the period 
of cell culture, cells were transferred to 4"C, rinsed twice with ice cold PBS 
containing 1 mM CaCI2, 1 mM MgCI2, and then extracted in situ with 1 ml 
per Petri dish of a buffer containing 10 mM Tris-HC! (pH 7.4), 140 mM 
NaCI, 5 mM EDTA, 2 mM DTT, 1 mM PMSF, 0.05 % Triton X-100 (near- 
physiological buffer) for 5 min at 4"C. Cells were scraped from the Petri 
dishes with a rubber policeman, homogenized with five strokes of a loose- 
fitting Dounce homogenizer (Kontes Glass Co., Vineland, N J) and extrac- 
tion was continued for another 5 min. The homogenate was centrifuged at 
100,000 g for 2 h to yield a supernatant (physiological supernatant) and pel- 
let. The latter was then homogenized by 10 strokes of the Dounce homogen- 
izer in a buffer containing 10 mM Tris-HCl (pH 7.4), 1.5 M KCI, 5 mM 
EDTA, 2 mM DTT, 1 mM PMSE 1% Triton X-100 (high salt buffer), ex- 
tracted for 10 rain on ice, and centrifuged at 20,000 g for 15 min to yield 
a supernatant (high salt supernatant) and pellet (insoluble fraction). For ki- 
netic experiments (see Results), the same numbers of cells were seeded in 
each Petri dish. Equal numbers of cells were obtained for each time-point 
as estimated by counting the cells obtained in control dishes. Similar protein 
contents were recovered for each time-point as estimated by quantitating 
proteins in control dishes with the Bolton-Hunter reagent (Bio-Rad protein 
assay dye reagent; Bio-Rad Laboratories, Richmond, CA). 

lmmunobiotting 
Immunoblotting with anti-DE anti-IX3, and anti-PG were performed on 
subcellular fractions obtained as described above. SDS-7.5% polyacryl- 
amide gels were loaded with samples resulting from the fractionation of the 
same number of cells (5 × 106 cells). Immunobiotting with mouse an- 
tivimentin and guinea pig gpl0 anticytokemtin 8 and 18 was performed on 
total cell lysates, obtained by solubilizing the same number of cells in SDS 
sample buffer. Proteins were transferred electmphoretieally from gels to 
nitrocellulose filters as described previously (69). Filters were incubated 
with a 1:1,000 dilution of anti-DP and anti-PG ascites, a 1:500 dilution of 
anti-DG ascites or gpl0 anticytokeratin antiserum for 2 h on a rotary shaker 
at room temperature, and rinsed extensively. The ~106 cpm of t25I-anti- 
mouse IgG or 12SI-protein A (10/~Ci/~g) were applied for 2 h at room tem- 
perature. The filters were rinsed extensively, air dried, and exposed at 
-80"C to XAR-5 x-ray films (Easmmn Kodak Co.). The resulting autora- 
diograms were analyzed with a Geiscan system equipped with a scanning 
densitometer (LKB Instruments Inc., Bromma, Sweden). The amount of 
protein in each sample was within the linear range of detection. 

Results 

Ultroser G Induces Modification of NBT-II 
Cell Morphology and Motility 
The NBT-II cell line is derived from a rat bladder squamous 
carcinoma which was first described as undergoing EMT 
when cultured on collagen type I fibers (66). We have found 
that a serum substitute (Ultroser G; IBF), added to a final 
concentration of 2 % in the standard medium (thus defining 
the so-called "inducing medium"), induced the same mor- 

phological changes as collagen type I. NBT-II cells grown on 
glass or plastic in standard medium assumed an epithelial 
morphology, forming dense monolayer colonies of tightly 
packed polygonal cells (Fig. 1 a). In inducing medium, they 
became progressively fibroblastoid: they flattened, exhib- 
ited a spindle shape, and crawled over one another (Fig. 1, 
a and b). 

The motility of NBT-II cells was therefore assayed by two 
different techniques, a colonization assay (wound healing) 
and time-lapse videomicroscopy. In the colonization assay, 
NBT-II cells cultured in standard medium were not able to 
cover a defined area or wound, that had been produced 24 h 
before, whereas NBT-II cells cultured for the same period in 
inducing medium invaded the wound completely (Fig. 1, c 
and d). The differences between the epithelial and fibro- 
blastoid NBT-1I cells in their ability to recolonize such wound 
areas did not arise from differences in their capacity to 
proliferate, since [3H]thymidine incorporation into NBT-II 
cells cultured in either standard or inducing medium was 
similar: NBT-II ceils cultured for 48 h in standard medium 
incorporated 39,933 (+ 5,601 SEM) cpm of [3H]thymidine 
added for the last 2 h of culture; whereas NBT-II cells plated 
and cultured in standard medium for 24 h and then in induc- 
ing medium for the last 24 h of culture incorporated, in the 
same experimental conditions, 36,483 (+ 965 SEM cpm) of 
[3H]thymidine. Time-lapse videomicroscopy experiments 
showed that cells migrated individually and did not move as 
groups or colony sheets. The speed of locomotion was mea- 
sured more precisely: NBT-II cells cultured in standard 
medium did not move at all, whereas NBT-II cells cultured 
in inducing medium for at least 12 h reached an average 
speed of locomotion of 50/~m/h. 

One of the major features of the EMT of NBT-II cells is 
the disruption of the extended cell contacts of the epithelial 
cells (Fig. 1, compare a and b). Since transmission electron 
microscopy performed on epithelial NBT-II cells in standard 
medium revealed the presence of numerous desmosomes in 
cellular interdigitations (data not shown), we studied the fate 
of some desmosomal proteins during EMT in special detail. 

Desmosomes Are Rapidly Altered During EMT 
Immunofluorescence studies performed with monoclonal an- 
tibodies against desmosome-specific proteins such as DPs I 
and II or DG showed that NBT-II cells cultured in standard 
medium expressed DP and DG immunoreactivities in typical 
punctate arrays along cell boundaries (Fig. 2, a and d, 
respectively). In addition, we examined the expression of 
junctional plaque proteins not confined to desmosomes: PG 
is shared in common by desmosomes and intermediate junc- 
tions (11); and vinculin is expressed in both intermediate 
junctions and focal contacts (28). Consequently, in contrast 
to the punctate staining of anti-DP and anti-DG, PG and vin- 
culin immunoreactivities were distributed uniformly along 
cell boundaries (Fig. 2, g and j ,  respectively). This indicates 
that adhering junctions of the intermediate type, probably 
puncta adhaerentia, contribute, in addition to desmosomes, 
to the intercellular coherence of NBT-II ceils. 

When the standard medium was replaced by the inducing 
medium, the immunoreactivities found with anti-DE anti-DG, 
anti-PG, and antivinculin antibodies rapidly disappeared 
from regions of intercellular contacts. 8 h after medium 
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Figure 1. Effects of the inducing medium on 
morphology and motility of NBT-H cells. 
NBT-II cells cultured in either standard (a) or 
inducing (b) medium display distinct morpho- 
logical features. Areas free of cells (wounds) 
made in subconfluent cell cultures were ex- 
amined after 24 h of culture in either standard 
(c) or inducing (d) medium. Note that in c, 
the wound is not repaired; whereas in d, it has 
been totally repopulated by cells. Bars: (a and 
b) 10 #m; (c and d) 100/tm. 

change, the majority of cells were negative, with the excep- 
tion of vinculin immunostaining which persisted at certain 
cell contacts. Morphological changes were not yet observed 
(Fig. 2, b, e, h, and k). 48 h after onset of EMT, little immu- 
nostaining was seen in occasional residual contacts and the 
morphology of the cells was obviously transformed (Fig. 2, 
c,f, i, and l). It is noteworthy that in ceils which had largely 
lost their cortical staining, DP antibodies displayed a cyto- 
plasmic immunostaining formed by the superposition of dis- 
crete spots on a diffuse staining pattern (Fig. 2 b). In the 
same conditions, anti-DG showed only a punctate cellular 
staining (Fig. 2 e) and staining with anti-PG and antivinculin 
antibodies was largely diffuse throughout the cytoplasm (Fig. 
2, h and k). 

We estimated the percent values of cells which had lost 
their cortical DP staining as a function of time after initiation 
of EMT (D- cells; cf. Fig. 3). Similar results were obtained 
from immunostainings with DG antibodies (data not shown). 
The relatively high basal level (23% D- cells in cultures 
grown in standard medium) was mainly due to the specific 
conditions of culture: since DP immunostaining was more 
easily observable at subconfluence, experiences were per- 
formed at ~70% confluence (in these culture conditions, 
some isolated cells were present and did not express desmo- 
somes). Therefore, the percent of D- cells was compared 
only in cells having reached the same degree of confluence 
(see Materials and Methods). 

During the first 4 h after medium change, there was no ob- 
vious change in the distribution of DP positive sites; i.e., 
desmosomes. Disappearance of cortical DP staining was first 
observed after 5 h of culture in inducing medium but was 
rather heterogeneous. Some cells were negative whereas 
others still showed desmosomal staining. The submembrane 
DP immunoreactivity was then lost very rapidly: after 8 h 
of culture in inducing medium, 80% of the cells were negative 
for cortical dot staining with anti-DP; i.e., for intact desmo- 
somes. As shown in Fig. 2, the disappearance of cortical im- 
munoreactivity of desmosomal marker proteins was cor- 
related with an increase in intracytoplasmic DP-positive 
"dots; suggesting that the modifications of desmosome im- 
munoreactivity were due to the rapid internalization of"half- 
desmosomes" occurring after initiation of EMT. To examine 
this hypothesis, we studied the localization of desmosomal 
proteins in subcellular fractions. 

Modifications of Levels of Soluble and Insoluble 
Desmosomal Proteins 
Desmosomes are known to be insoluble structures resistant 
to solubilization by nonionic detergents and buffers of high 
and low ionic strength (27). Partitioning the cytoplasm into 
different fractions extracted by near-physiological, Triton 
X-100 high salt, and SDS-PAGE buffers allowed us to dem- 
onstrate that these proteins existed in soluble and insoluble 

The Journal of Cell Biology, Volume 109, 1989 1498 



Figure 2. Disappearance of DE 
DG, PG, and vinculin from the 
cellular cortex of NBT-II cells 
during EMT. Subconfluent mono- 
layers of NBT-II cells were estab- 
lished in standard medium (a, d, 
g, and j). Alternatively they were 
cultured in inducing medium for 
various periods of time" 8 h (b, e, 
h, and k) or 48 h (c, f, i, and l). 
The cells were subsequently fixed 
in methanol/acetone at -20°C 
and processed for immunofluo- 
rescence with monoclonal anti- 
bodies directed against DP I and 
II (a-c), DG (d-f), PG (g-i), and 
vinculin (j-l) as primary antibod- 
ies followed by Texas red-coupled 
anti-mouse IgG as secondary an- 
tibody. Note the progressive dis- 
appearance of immunoreactivity 
from cellular junctions and cell 
periphery, and the concomitant 
increase of immunoreactive dots 
of DP and DG deep in the cyto- 
plasm. Because of the heteroge- 
neity of the culture, the number of 
cells having lost their peripheral 
staining does not necessarily re- 
flect the quantificative data shown 
in Fig. 3. Bar, 10 #m. 

forms (see also references 11, 13, 27, 50). Extraction in near- 
physiological and high salt buffers released certain des- 
mosomal proteins in a soluble state (Fig. 4, PS and HSS), 
whereas the insoluble proteins were extracted only by the 
final SDS-PAGE buffer (Fig. 4, HSI). These insoluble pro- 
teins probably represented those proteins which were stably 
assembled into a cytoskeletal array and which formed the 
complex structures seen at the electron microscopic level. 
The soluble protein pool could represent either newly syn- 
thesized molecules not yet assembled into plaque structures, 
or the proteins disassembled from desmosomes, or a mixture 
of both. 

Interestingly, the solubility properties of DE DG, and PG 
were not identical. Under standard conditions, the soluble 
pool of DP molecules (•20% of the total) was released by 
the near-physiological buffer (Fig. 4 A, PS, lane S) and fur- 
ther extraction with high-salt buffer did not solubilize con- 

siderable additional amounts of DP (not shown). On the other 
hand, the near-physiological buffer did not solubilize DG 
molecules, as expected for an integral membrane glycopro- 
tein (not shown). A certain proportion of DG (<10% of the 
total) was solubilized with the Triton X-100, high salt buffer 
(Fig. 4 B). Although present in intermediate junctions as 
well as in desmosomes, PG molecules were also subjected 
to the same analysis. As already described for other cell cul- 
tures (24), the PG soluble pool (~o30% of the total) could 
be divided into molecules extracted by the initial near-phys- 
iological buffer and into molecules solubilized subsequently 
by the detergent-high salt buffer (Fig. 4 C, see the first lane 
of PS and HSS). 

Immunoblotting of the subcellular fractions performed as 
described in Fig. 4 was done in conditions which ensured the 
linearity of the signal within the range of measures. The par- 
titioning of DE DG, and PG proteins into soluble and insolu- 
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Figure 3. The rapid decay of cortical DP immunoreactivity in in- 
ducing medium is preceded by a latent period. Subconfluent cul- 
tures of NBr-II cells were established in either standard or inducing 
medium. Cells were fixed and processed for immunofluorescence 
with a monoclonal DP antibody. Cells were considered as negative 
(DP- cells) when no cortical staining was visualized. The 20% 
background level is due to the fact that immunofluorescence studies 
were performed after growing cells at subconfluence. 

ble forms was carried out at different t ime points during 
EMT. By scanning the autoradiograms, it was thus possible 
to estimate the percent of  each component present in the 
soluble and insoluble pools during EMT. As shown in Fig. 
5 a ,  the level of  soluble DP changed only slightly in the first 
hours after EMT initiation but then increased drastically in 
the following 11 h, so that 16 h after medium change the cells 
contained twice more soluble DP than in standard condi- 
tions. 
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Figure 4. Levels of soluble and insoluble forms of DP, DG, and PG 
during EMT. Subconfluent cultures of NBT-II cells were estab- 
lished in standard medium (lanes S). Alternatively, they were cul- 
tured in inducing medium for 8, 16, or 48 h. Cells were then lysed 
and fractionated in situ with near-physiological and Triton X-100, 
high-salt buffers to yield a physiological supernatant (PS), high salt 
supernatant (HSS), and insoluble fraction (HSI). The proteins 
solubilized in SDS-containing buffer were separated by SDS-PAGE 
and immunoblotted with DP (A), DG (B), and PG (C) antibodies. 
Since extraction with high salt buffer does not release substantial 
amounts of DP protein in soluble form, and extraction with near- 
physiological buffer does not solubilize DG protein, the corre- 
sponding autoradiograms have not been shown. 
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Figure 5. Modifications of levels of DE DG, and PG in soluble and 
insoluble forms during EMT. Subconfluent monolayers of NBT-II 
cells were fracdonated into a physiological supernatant ([]), high 
salt supernatant ( , ) ,  and insoluble fraction (x).  Each lysate for 
each time-point was divided into equal aliquots which were sepa- 
rated by SDS-PAGE and immunoblotted with anti-DP (a), anti-DG 
(b), and anti-PG (c). The immunolabeled DP, DG, and PG were 
quantitated as described in Materials and Methods. Values are ex- 
pressed as the calculated peak areas resulting from scanning the au- 
toradiograms. 
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Figure 6. A short pulse of treatment with 
inducing medium is sufficient to induce 
the change in DP distribution. Subcon- 
fluent monolayers of NBT-II cells were 
cultured in either standard or inducing 
medium for various periods of time. The 
black boxes on the left represent the dura- 
tion of the pulse of inducing medium and 
the white boxes on the left the duration of 
the subsequent culture in standard medi- 
um. In a, the cells were pulsed with the 
inducing medium for various periods of 
time and examined for DP immunofluo- 
reseence after 8 h of culture. In b, the cells 
were pulsed for 2 h with the inducing 
medium and were incubated subsequently 
in standard medium for periods up to 
46 h. In c, the cells were pulsed for 2 h 
with the inducing or standard medium. 
They were then trypsinized with 0.05% 
trypsin and 0.02% EDTA, plated on glass 
coverslips, and incubated for another 16 h 
in standard or inducing medium. Each 
line on the right side represents the per- 
cent of cells without cortical DP immuno- 
staining (DP- cells), which were grown in 
the conditions defined in the correspond- 
ing line to the left. 

The membrane-bound glycoprotein DG showed a different 
kind of change of its solubilization properties (Fig. 5 b). Un- 
til 16 h after EMT initiation, a significant proportion of it 
remained in a pelletable form that could not be extracted in 
the Triton X-100 high salt buffer used. Thereafter, however, 
the relative proportion of insoluble fraction as well as the ab- 
solute amount of DG decreased drastically. This indicated 
that the state of DG is altered upon the internalization of the 
desmosomal material. 

An even different solubilization behavior was found for 
PG. The PG pool soluble in near-physiological buffer re- 
mained essentially unaltered (Fig. 5 c) whereas the high 
salt-extractable and insoluble pools decreased significantly. 
As a result, 48 h after the onset of EMT the form soluble in 
the near-physiological buffer exceeded the insoluble PG. 

Internalization of  Desmosomal Proteins Requires 
only a Short Pulse of  Inducing Medium and Can Be 
Reversed in Standard Conditions of  Culture 

NBT-II cell dissociation by inducing medium exhibited some 
features which were different from those observed after 
lowering the Ca ++ concentration in the culture medium: in 
low calcium medium, DP and DG immunoreactive sites 
were totally internalized in <1 h, whereas a considerable 
proportion of the PG and vinculin immunoreactive struc- 
tures remained at the cell surface (data not shown). We there- 
fore decided to define some prerequisites of the system in or- 

der to understand how the signal provided by the inducing 
medium acts in the cell and on the desmosomes. 

In a first set of experiments, we applied a pulse of inducing 
medium for various periods (up to 8 h) followed by culture 
in standard medium. We estimated the effect on desmosomes 
by counting the number of cells without cortical DP im- 
munoreactivity after a total of 8 h in the culture conditions 
defined above. As shown in Fig. 6 a, a 30-min or 1-h pulse 
did not induce obvious desmosome losses. 2- and 3-h pulses, 
however, led to desmosome disappearance in 40 and 50% of 
the cells, respectively. In comparison, the continuous pres- 
ence of the inducing medium for 8 h led to DP internalization 
and desmosome loss in 70% of the cells. 

In a second set of experiments, NBT-II cells were pulsed 
for 2 h with the inducing medium and then incubated for 
varying periods in standard medium. The number of cells 
without DP reactive sites at the cell periphery (Fig. 6 b) de- 
creased with time of culture in the standard medium and 
reached the basal level (identical to that obtained without in- 
ducing medium) after 46 h of chase with the standard 
medium. We conclude, therefore, that the loss of desmo- 
somes, which cannot be observed before several hours of cul- 
ture, occurs even if the inducing medium is not applied dur- 
ing the whole incubation period but is totally reversible by 
culturing the cells back in standard medium during an appro- 
priate period of time; i.e., for 2 d. 

To rule out the possibility that the long-term inducing 
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Figure 7. The change in DP distribution is dependent on phosphory- 
lation and protein synthesis. Subeonfluent monolayers of NI~-II 
cells were established for 6 h in standard medium (e), in standard 
medium containing I mM eycloheximide (a) or in standard medium 
containing 600/~M 6-DMAP (f). Alternatively, the cells were cul- 
tured for 6 h in inducing medium in the absence of inhibitors (g), 
in the presence of 1 mM eycloheximide added throughout the 
period of culture (b), in the presence of 1 mM eycloheximide added 
for the first 3 h (c), in the presence of 1 mM cycloheximide added 
for the last 3 h (d), or in the presence of 600/zM 6-DMAP (h). 
The cells were fixed and processed for immunofluorescence using 
a monoclonal DP antibody. Note that neither eycloheximide nor 
6-DMAP alters the peripheral distribution of DP in cells grown in 
standard medium. In contrast, they inhibit desmosome internaliza- 
tion and loss triggered by the inducing medium. Bar, 10 ~m. 

effect was due to the slow release of inducing factors from 
the extraceUular matrix synthesized by NBT-II cells, we car- 
ried out a third set of experiments (Fig. 6 c). After a 2-h incu- 
bation in either standard or inducing medium, cells were 
trypsinized, washed extensively, plated on coverslips, and 

cultured for another 16 h in standard or inducing medium. 
As illustrated in Fig. 6 c, control cells pulsed and cultured 
in standard medium after trypsinization were able to reform 
desmosomes at the end of the incubation. On the other hand, 
desmosomes were internalized or lost in 50% of the cells 
first pulsed with inducing medium, and then trypsinized and 
cultured in standard medium. 

Together, these results indicate that the signals provided by 
the inducing medium reach the cell rapidly, suggesting that 
the cellular modifications in response to the inducing signals 
are not leading immediately to cell dissociation and loss of 
desmosomes. 

Internalization of Desmosomes Requires Protein 
Synthesis and Phosphorylation 
Cycloheximide, an inhibitor of protein synthesis, was added 
to cells grown in inducing medium for 6 h. Desmosome dis- 
appearance was estimated by the loss of DP reactive sites at 
the cell periphery. When 1 mM cycloheximide was present 
throughout the incubation period in the inducing medium, no 
desmosome losses were observed (Fig. 7 b). The same 
blocking effect was obtained when 1 mM cycloheximide was 
added for the first 3 h of incubation and then removed from 
the cell culture by extensive washing (Fig. 7 c). In contrast, 
when added for the last 3 h of the incubation period, cyclo- 
heximide did not have any effect on desmosome modulation 
(Fig. 7 d). We checked, by [35S]methionine incorporation 
experiments done in parallel, that the presence of cyclohexi- 
mide in the culture medium totally blocked protein synthesis, 
whereas removing the drug from the cell culture restored it 
(data not shown). 

We tested also the effect of 6-DMAP, an inhibitor of di- 
verse cellular kinases (45), on the internalization of des- 
mosomes in the inducing medium. Used at concentrations 
ranging from 20 #M to 1 mM, 6-DMAP did not inhibit 
pS]methionine incorporation into NBT-II cells and at con- 
centrations up to 800 /~M it inhibited only slightly 
[3H]thymidine incorporation (data not shown). When used 
at high concentrations (600-800 #M) 6-DMAP abolished 
the effect of the inducing medium on desmosomes (Fig. 7 h). 
In control cells cultured in standard medium, the addition of 
6-DMAP did not modify substantially the distribution of DP 
immunoreactive sites (Fig. 7 f ) .  The inhibitory effect ob- 
served with 6-DMAP did not result from the partial inhibi- 
tion of proliferation since drugs such as hydroxyurea, which 
totally inhibited [3H]thymidine incorporation into NBT-II 
cells had no effect on desmosome internalization (data not 
shown). 

These results suggest that protein synthesis and phos- 
phorylation events are necessary steps in the pathway leading 
to desmosome disruption and internalization. 

Modifications of Cytoskeletal Organization During 
Cell Dissociation 
The cytoskeleton is likely to be involved in EMT-like changes 
of cell organization for two main reasons. First, microfila- 
ment organization plays a major role in the acquisition of 
motility (38). Second, desmosomes anchor intermediate 
filaments (IFs) to the cell surface (e.g., reference 5). There- 
fore, it was interesting to study the distribution of the actin 
filament system and the IF cytoskeleton in epithelial and 
fibroblastoid NBT-H cells. 
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Figure 8. Changes of cytoskeletal elements in epithelial and fibroblastoid NBT-II cells. Subconfluent monolayers of NBT-II cells were main- 
mined in either standard (a, c, and e) or inducing (b, d, and f )  medium, fixed, and processed for immunofluorescence microscopy. (a 
and b) Actin was visualized using FITC-labeled phalloidin. Note actin enrichment along cell boundaries in a but not in b. The inset in 
b shows a well-spread fibroblastoid cell exhibiting actin staining with several focal contacts. (c and d) For fodrin immunostaining, cells 
were fixed in formaldehyde (1.75%) and permeabilized with Triton X-100. Photographs shown here were taken at the basolateral plane of 
the cells. Note peripheral enrichment at cell boundaries in c and a central, mostly perinuclear concentration in d. (e and f )  Aminopeptidase 
N immunoreactivity was visualized on the apical surface of epithelial ceils (e), whereas it was distributed uniformly on the entire cell 
surface of fibroblastoid cells (f) .  Bar, 5 #m. 

The distribution of actin was primarily subcortical in the 
epithelial cell cultures (Fig. 8 a). It became less organized 
in fibroblastoid cells appearing upon growth in inducing 
medium. In some cells, stress fibers formed by actin bundles 
were visualized, whereas in other cells, the pattern was more 
disperse (Fig. 8 b). Actin bundles were localized predomi- 
nantly at the edges of  some well-spread fibroblastoid cells 
(Fig. 8 b, inset), with a pattern similar to that found in focal 
contacts. 

We also studied the distribution of fodrin, the structural 
and probably functional homologue of spectrin in nonery- 

throid cells (29). As shown in Fig. 8 c, fodrin immunostaining 
was prominent in the regions of cell contacts, and focusing 
at the apical and basal planes indicated that it was predomi- 
nantly localized at the basolateral membrane.  The polarized 
staining was lost as early as 8 h after addition of the inducing 
medium. Little or no fodrin was detected in regions of  appo- 
sition of adjacent cells, and the fodrin immunostaining as- 
sumed a diffuse distribution enriched in the perinuclear re- 
gion (Fig. 8 d) .  

Aminopeptidase N, which is localized at the apical surface 
of rabbit intestinal cells (30), assumed a partially polarized 
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Figure 9. Expression of intermediate 
filaments in epithelial and fibmblastoid 
NBT-II cells. Subconituent monolayers 
of NBT-II cells were maintained in either 
standard (a and c) or inducing (b and d) 
medium, fixed, and processed for im- 
munofluorescence microscopy using a 
monoclonal cytokeratin antibody (lu-5) 
(a and/7) or a human aut_oiinmune an- 
tiserurn against vimentin (c and d). Note 
typical epithelial fibril organization in a, 
with anchorage sites at desmosomes, as 
compared to a less ordered display in 
b. V'maentin filaments are not detected 
in epithelial cells (c) but are intensely 
stained in fibroblastoid ceils (d). (e, f, 
and g) 20 ~1 of total lysates correspond- 
ing to a constant number of cells har- 
vested from cultures in standard medium 
(lane 1) or from cultures induced for 
I to 4 d 0anos 2 to 5, respectively) were 
subjected to gel electrophoresis and im- 
munoblotting (upper part) performed 
using monoclonal antibodies against 
cytokeratins g and 18 (e), vimentin (f),  
and actin (g). The resulting autoradio- 
grams were scanned by densitometry 
and the peak areas calculated (lower 
part). Note that the steady-state level of 
cytokeratin proteins decreases as vimen- 
tin expression increases. As an internal 
control, actin expression remains rough- 
ly constant during EMT. Bar, 10 pm. 

distribution on the plasma membrane of NBT-II cells: its im- 
munoreactivity was observed predominantly at the apical 
surface (Fig. 8 e); this restricted distribution was lost upon 
growth in inducing medium and the immunoreactivity was 
redistributed on the entire cell surface (Fig. 8 f ) .  

The organization of cytokeratin IFs in epithelial and 
fibroblastoid forms of NBT-II cells was studied with cytoker- 
atin antibodies (Fig. 9, a and b) as well as with a guinea pig 
antiserum specifically directed against cytokeratins 8 and 18 
(data not shown). In the epithelial cell colonies, the cytokera- 
tin filaments displayed a very organized distribution: the an- 
tibodies stained fibrils extending from the cell surface to the 
perinuclear region, many of them showing an almost radial 
distribution (Fig. 9 a). The fibroblastoid cells exhibited dra- 
matic differences of cytokeratin filament organization. The 
overall immunostaining with both kinds of antibodies was 

greatly reduced and the fibrils formed a disorganized cyto- 
plasmic meshwork which apparently had lost its membrane 
anchorage (Fig. 9 b). 

Vimentin was not detected in NBT-II epithelial cells (Fig. 
9 c). However, after 2 d of culture in the inducing medium, 
vimentin IFs were observed in many cells, whereas other 
cells had a more diffuse pattern of staining (Fig. 9 d). Immu- 
noblotting experiments performed with antibodies specific 
for cytokeratins 8 and 18 and vimentin confirmed the 
progressive reduction of cytokeratins and the appearance of 
vimentin during EMT. Quantification of the amounts of 
cytokeratins and vimentin expressed during EMT was done 
by scanning the autoradiograms (Fig. 9, e and f ) .  As early 
as 1 d after addition of the inducing medium, the amount of 
cytokeratin was already reduced, whereas vimentin expres- 
sion was not yet initiated. Vimentin expression was visual- 
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Figure 10. Disruption of cell contacts and changes in desmosomes are not dependent on cell movement. Subconfluent monolayers of NBT-II 
cells were established in either standard (a, b, e, and f )  or inducing medium (c, d, g, and h) for 16 h. Cells were cultured in the absence 
(a, c, e, and g) or presence (b, d,f, and h) of cytochalasin B (1 #g/ml). (a-d) In one set of experiments, the cultures were scratched gently 
in order to create wounds and photographs of the wounds were taken at the end of the incubation. Control cells cultured in standard medium 
do not migrate into the cell-free area (a and b), whereas cells grown in inducing medium have totally covered it (c). The migration of 
cells grown in inducing medium is inhibited by cytochalasin B (d). (e-h) In a parallel set of experiments, cells were fixed and processed 
for DP immunostaining. Note that the cells grown in inducing medium are elongated in the absence of cytochalasin B (g), whereas in 
the presence of cytochalasin B (h) they are dissociated but do not exhibit pseudopodial protrusions. Bars: (a-d) 100/~m; (e-h) 10 ttm. 

ized by immunoblotting 2 d after initiation of the transition 
and then increased dramatically. 3--4 d after initiation of the 
transition, the expression of cytokeratin proteins was strik- 
ingly lowered but not totally abolished. This result confirms 
the immunofluorescence data, showing the persistant but 
much lower expression of cytokeratins in fibroblastoid NBT- 
II cells together with the appearance of vimentin fibrils. 

Desmosome Loss Is not Necessarily Related to 
Acquisition of  Cell Motility 

Since cell dissociation, desmosome changes, acquisition of 
motility, and alterations in the cytoskeletal organization oc- 
curred roughly at the same time during EMT, it was impor- 
tant to know whether the disruption of intercellular contacts 
and the rearrangement of desmosomes were merely a conse- 
quence of the mechanical stresses exerted by cells in move- 
ment. To answer this question, we carried out a series of ex- 
periments in which cell motility was inhibited by cytochalasin 
B and the cells examined for DP immunoreactivity. We used 
cytochalasin B at 1 /zg/ml, which was found not to inhibit 
[3sS]methionine incorporation during the 16-h experiment 
and which inhibited [3H]thymidine incorporation by only 
50% (data not shown). Up to 1 ttg/ml, cytochalasin B had 
no detectable effect on the morphology and DP immunoreac- 
tivity of epithelial NBT-II cells cultured in the standard me- 
dium (Fig. 10, compare a and e with b and f ) .  Motility of 
NBT-II cells grown in the presence of cytochalasin B was 
tested by the colonization assay described above. For con- 
centrations ranging from 0.4 #g/ml to 1/zg/ml, cytochalasin 
B prevented NBT-II cells cultured in the inducing medium 
from penetrating into cell-free areas provided by cell culture 
wounds (Fig. 10, compare c and d). However, at the same 

concentrations, it was not able to inhibit desmosome disrup- 
tion and internalization (Fig. 10, compare g and h). In the 
presence of cytochalasin B, the cells cultured in the inducing 
medium were obviously dissociated, although they did not 
elongate or spread (Fig. 10 h). Since the cell colonization as- 
say assessed the motility of NBT-II cells rather than their 
proliferation rate, these results suggested that desmosome al- 
terations, although coincident with the acquisition of motil- 
ity were not a direct consequence of it. 

The Transition Towards a Fibroblastoid Phenotype 
Is Reversible 

The maintenance of the fibroblastoid phenotype was strictly 
dependent on the continuous presence of the inducing 
medium. Whatever the duration of culture in inducing 
medium, fibroblastoid cells were able to reacquire their epi- 
thelial differentiation provided that the inducing medium was 
replaced by standard medium. Immunofluorescence micros- 
copy was performed with anti-DP and antivimentin on cell 
cultures which were maintained for 2 mo in the inducing 
medium and grown back in the standard medium for 3 d. In 
clusters of cells appearing upon growth in standard medium, 
no extended vimentin IF staining was detected (Fig. 11 a). 
In these cells, a punctate peripheral staining typical of that 
observed for desmosomes was observed with anti-DP im- 
munolabeling (Fig. 11 b). This result suggests that the transi- 
tion to the mesenchymal phenotype could be fully reversed 
by removing the inducing medium. The long period of time 
required for the disappearance of vimentin IFs most likely 
reflects the high stability of these filaments and the longevity 
of the protein (4). 
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Figure 11. The transition towards a fibroblastoid phenotype is reversed by removing the inducing medium. NBT-II cells were maintained 
in inducing medium for 2 mo before switching to standard medium for 3 d. Cells were fixed and processed for double immunofluorescenee 
microscopy using a human autoimmune antiserum against vimentin (a) and a monoclonal antibody against DPs (b). Note recovery to 
vimentin-negative state in the peripheral epithelial cell colony (a) which exhibits DP immunolabeling in a peripheral punctate pattern typical 
of localization of the immunoreactivity in desmosomal intercellular junctions (b). Bar, 25 #m. 

Discussion 

Understanding the mechanisms involved in the change of cell 
organization from an epithelial to a fibroblastoid appearance 
(EMT) whereby the orderly activation or suppression of 
genes in response to environmental signals leads to cell dis- 
sociation and motility remains a crucial issue in embryology. 
We have been able to demonstrate that soluble factors con- 
tained in Ultroser G, as well as insoluble extracellular matrix 
components (66; Tucker, G. C., B. Boyer, J. Gavrilovic, H. 
Emonard, and J. P. Thiery, manuscript in preparation), in- 
duce such a conversion in an in vitro cell culture model sys- 
tem; i.e., the NI~-II cell line derived from a rat bladder car- 
cinoma (70). Our major goal is now to purify the soluble 
factors promoting multiple effects such as cell dissociation 
and motilitY, and to understand what is the hierarchy of the 
events leading to EMT. Apparently, the NBT-II cell model 
system fulfills several major criteria of EMT as described in 
other systems. 

First, we show that addition of inducing medium (contain- 
ing Ultroser G) induces morphological changes resembling 
those observed in embryonic cells undergoing EMT. Before 
addition of inducing medium, the cells form a cobblestone- 
like monolayer of polygonal cells; whereas upon addition of 
inducing medium, the cells dissociate, assume a spindle-like 
shape, and migrate actively as individual cells. 

Second, the changes in cytoskeletal organization also cor- 
respond to a change from an epithelial to fibroblastoid char- 
acter. In standard medium, NBT-II cells form an epithelial- 
like sheet, as indicated by the enrichment of fodrin, a marker 
of the basolateral domain of the plasma membrane (46), at 
the basolateral plasma membrane; as well as by the predomi- 
nantly apical localization of aminopeptidase N; and by the 
observation that in immunofluorescence microscopy, PG and 
vinculin are enriched in extended, linear boundary struc- 
tures at the level of the subapical cortex, resembling a zonula 
adhaerens. 

Third, NBT-II cells contain a well-developed network of 
cytokeratin IFs, most of which radiate from the perinuclear 
cytoplasm toward the periphery, where they frequently ter- 

minate as discrete spots near the plasma membrane; i.e., 
desmosomes. After induction of EMT, the cytokeratin fibril 
distribution is dramatically altered and no longer shows 
preferential order. However, even though expressed in lower 
amounts, cytokeratins do not disappear completely from the 
fibroblastoid NBT-II cells. Probably, some of these residual 
cytokeratin IFs are anchored to the plaques associated with 
the intracytoplasmic, desmosome-derived vesicular struc- 
tures, as described for other individualized epithelial cells 
separated by treatment with Ca+÷-chelating agents, or with 
trypsin, or after growth in media of low calcium concentra- 
tions (13, 35, 41, 42, 49). Electron microscopy studies are 
underway to clarify this point. 

Fourth, vimentin IFs are formed in the fibroblastoid NBT- 
II cells relatively early upon EMT induction. Such a rapid 
induction of vimentin IF formation has been often observed 
in primary cultured epithelial cells (59) including rat hepato- 
cytes (24), as well as human mesothelial and urothelial cells, 
and this advent of vimentin is known to be influenced by vari- 
ous components such as externally added retinoid com- 
pounds as well as certain growth factors and hormones (for 
reviews see references 37, 53, 54). Since it has been demon- 
strated that vimentin IFs may be linked to desmosomes (10, 
25, 36), the desmosome-derived structures detected in the 
cytoplasm of the fibroblastoid NBT-II cells could be as- 
sociated with vimentin as well as with cytokeratin filaments. 
Induction of synthesis of vimentin in carcinoma cells is also 
of interest since the onset of vimentin synthesis has been cor- 
related in some carcinoma cells with the acquisition of 
metastatic properties (52). 

Fifth, actin is another cytoskeletal protein whose change 
in distribution is indicative of EMT: after addition of the in- 
ducing medium, the cortical ring of actin microfilaments dis- 
appears and is replaced by stress fibers in the long axis of 
cells, typical of many mesenchymal cells in culture (6). 

Taken together, these changes of cytoskeletal characteris- 
tics indicate that the NBT-II model provides a meaningful 
system in which to analyze possible biochemical and genetic 
mechanisms involved in EMT. It should be noted, however, 
that none of the above mentioned criteria alone defines a 
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change to a state of a cell comparable to the complete de- 
velopmental program of a mesenchymal cell in embryogene- 
sis, nor does it exclude an epithelial cell character: individ- 
ual or loosely interconnected cultures of round or elongated, 
spindle-shaped ceils have been described for various cell cul- 
tures derived from epithelial ceils, including cells from thy- 
mic reticulum (40, 56, 63), mesothelium (19, 36, 37), mam- 
mary gland epithelium (58), amniotic fluid (48), as well 
as carcinoma cells floating in -and  cultured from-pleural 
fluids or ascites (52). Clearly, the continual expression of 
some cytokeratins, and the presence of cytokeratin IFs, per 
se are not inhibitory to cell motility in vitro as indicated by 
the presence of cytokeratin IFs in certain cultured fibro- 
blastoid or even smooth muscle-like cells (1). 

Alterations of Desmosomal Components During Cell 
Dissociation and EMT 

The role of the extracellular matrix in the transient ability 
of NBT-II cells to migrate is currently under study (Tucker, 
G. C., B. Boyer, J. Gavrilovic, H. Emonard, and J. P. Thiery, 
manuscript in preparation). In the present study, we have fo- 
cused our interest on possible mechanisms that contribute to 
NBT-II cell dissociation. Clearly, intercellular adhesion of 
epithelial cells is mediated by CAMs and special junctions. 
The modulation of CAMs during EMT has been well docu- 
mented in vivo (12), and it has been suggested from in vitro 
transfection experiments that transfection of the liver cell 
adhesion molecule (L-CAM) provides a mechanism for ag- 
gregation of cells. However, it is also clear that the formation 
of epithelial sheets does not depend exclusively on CAM ex- 
pression (16, 44). Thus, cell adhesion in epithelial sheets 
must involve other components, and here the constituent 
molecules of junctions are obvious candidates. Among the 
specialized junctions, desmosomes seem to play a crucial 
role in the establishment and maintenance of epithelial sheets, 
although it is not yet clearly established which desmosomal 
components are actually involved in cell adhesion (27). Our 
present results show extensive alterations of desmosomal 
structures and proteins during EMT, whereas the disappear- 
ance of vinculin from the cell cortex, which is probably 
confined to intermediate junctions, is a later event. The 
mechanisms by which Ultroser G acts to promote desmosomal 
changes is most probably a multistep cascade, as suggested 
by our immunofluorescence microscopic studies of cells 
grown in various culture conditions. We demonstrate that a 
5-h period of latency follows the addition of Ultroser G and 
that desmosomal splitting and partial disassembly is subse- 
quently achieved in the ensuing 3 h. The 5-h latency period 
obviously exceeds the time needed for the interaction of 
Ultroser G with the cells since a 2-h pulse of inducing medium 
has a notable effect on desmosomes which is then observed 
several hours after removing the inductor from the culture 
medium. During this 2-h period the inductor probably re- 
mains associated with cells, and is not trapped in the extra- 
cellular matrix, as trypsinization of NBT-II cells pulsed for 
2 h with inducing medium did not prevent desmosome 
changes. Moreover, we have shown that the pathway leading 
to desmosome alterations includes phosphorylation and the 
action of certain limiting proteins as indicated by the effects 
of some specific inhibitors of phosphorylation and protein 
synthesis. Obviously, analysis of the proteins accumulating 
in NBT-II cells in response to inducing medium is needed to 

give further insight into the mechanisms by which the induc- 
ing medium produces desmosome alterations. 

As a first step we have studied, by immunolocalization and 
immunoblotting of proteins of subcellular fractions, the fate 
of desmosomal proteins during EMT. Immunolocalization of 
DPs I and U reveals that cortical (i.e., desmosome-associated 
DP) is internalized during EMT and appears as discrete in- 
tracytoplasmic spots which most likely represent endocytic 
vesicles bearing remnants of desmosomal plaques (cf. refer- 
ences 13, 35). The vesicle nature is also indicated by the ap- 
pearance of DG, a transmembrane protein, in such dots (cf. 
this study and reference 13). Concomitantly, there is a nota- 
ble increase in the diffuse cytoplasmic immunofluorescence 
with DP antibodies, similar to that observed upon exposure 
of cells to low calcium concentrations (35, 41, 42, 50). Bio- 
chemical analyses suggest that during this period of time a 
considerable portion of DP is solubilized, since the soluble 
DP pool increases for the first hours of EMT, whereas the 
proportion of insoluble DP decreases. We suggest therefore 
that solubilization of DP might play a key role in the desta- 
bilization of desmosomes. Studies of the rates of synthesis 
and turnover of the various desmosomal proteins, in pulse 
and pulse-chase experiments, are now underway to identify 
more precisely the desmosomal target(s) involved in these 
changes. 

In the last decade, the problem of assembly and disassem- 
bly of desmosomes and desmosomal plaques has been ap- 
proached primarily by calcium switch experiments (32, 35, 
41, 42, 50). However, the specific regulation of desmosome 
formation and disassembly may depend on the cell type used 
and on the specific inductor of the switch. The NBT-II model 
system thus provides an alternative physiologically relevant 
method to study the reversible process of desmosome assem- 
bly and disassembly. Obviously, there also exist other factors 
that can affect, or at least contribute to, the dispersion of cells 
from a tightly packed cobblestone monolayer to a population 
of motile individual ceils, such as the "scatter factor" de- 
scribed by Stoker and colleagues (60, 61). Future experiments 
will reveal whether these different factors interact separately 
with distinct receptors or whether there are interrelationships 
forming effector networks. 

Our observations made with the NBT-II rat bladder carci- 
noma cells grown in culture may also be relevant for our un- 
derstanding of two major events in cancer spreading and 
malignant growth; i.e., invasion and metastasis on the one 
hand and the progressive appearance of tumor cell type het- 
erogeneity on the other (for reviews see references 18, 33, 
47). Local, and usually transient, loss of intercellular adhe- 
sion, including the splitting of desmosomes, is an obvious 
prerequisite for the invasion of carcinomas and for metastasis 
to distant sites, and this spreading of tumor cells is appar- 
ently facilitated by a higher motility of the invasive and 
metastatic cells. Moreover, changes of the morphological ap- 
pearance and the state of differentiation of cells within a tu- 
mor similar to those described in the present study will give 
rise to intrinsic tumor cell heterogeneity, which may also in- 
clude differences in the expression program and would ex- 
plain the known, puzzling phenomenon of the emergence of 
different kinds of tumors from a certain primary carcinoma, 
including the appearance of %arcomatous" tumor forms from 
originally solid carcinomas (for a comprehensive review see 
reference 39, and also for the in vitro and in vivo emergence 
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of different types of carcinomas from a given kind of bron- 
chial tumor see references 14, 31). Such changes of the 
differentiation character of the cells in a given primary tumor 
are particularly problematic as their frequency seems to be 
often enhanced during therapy. If one makes the reasonable 
assumption that conversions of the differentiation type of one 
tumor cell type to another, as we describe for the NBT-II cell 
model in vitro, can also occur in vivo, it seems impossible 
to escape the corollary that the local environment of a tumor 
may not only influence its proliferation rate but also its state 
of differentiation and its metastatic potential. 
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